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Introduction and Motivation

@ Stochastic volatility (SV) models capture the impact of
time-varying volatility on the financial markets, and hence are
heavily used in financial engineering.

@ Most research on American option pricing in SV models assume
that the volatility is fully observable.

@ However, SV is not directly observable in reality.

@ Consequence of assuming fully observable SV:

@ Overpricing of the option.
o The optimal exercise policy not replicable in reality.



Partially Observable SV

@ SVis not directly observable # We know nothing about SV.

@ SV can be inferred from the observed asset prices: a density
estimator is P(SV|history of asset prices). So SV is “partially
observable”.

@ This density estimator provides a full characterization of the SV
based on all the available information.

@ An optimal exercise policy in reality should rely on all the available
information (i.e., the history of asset price).



SV Model

@ Let (Q,F, F:,P) be a probability space. The SV {X;} and price
{St} of an asset follow the processes:

dX; = a(X)dt+ B(X)dW,,
dS; = Sy(rdt+ o(X;)dW?),

where r is the interest rate, {W,'} and { W2} are correlated
Wiener processes with d W, dW? = pdt and p € [-1,1].

@ For example, in Heston Model, {X;} is an
Ornstein-Uhlenbeck(OU) process that satisfies

dX; = A(6 — X;)at + vd W,



Pricing under Partially Observable SV

@ Assume a finite number of exercise opportunities {fy, t, ..., tr},
simply denoted as 7 = {0,1,..., T}. Denote
FIS & 0(80,81,.. .,St).

@ The option (it is in fact a Bermudan option) price is

Vo(So,ﬂ'o) = max E[QT(ST”SO = So,Xo ~ 7T0].
TEJ,{]:rs}fadpted

@ The stopping time (exercise policy) = only depends on the history
of the asset price.



Transformation

@ The above partially observable problem can be transformed to an
equivalent fully observable one by introducing a new state,
“filtering distribution":

Wt(Xt):p(Xt:Xt’SOZSo,“- ,St:St), t=1,...,T.

@ [1¢(random variable form of ;) is updated by receiving the asset
price S; at time t. I1; satisfies the recursion

My = ®¢(Mi—1, Si-1,St), t=1,...,T.

Therefore, (S, M) is an F°-adapted Markov process.



Theoretical Approach: Dynamic Programming

@ Theoretically, the option value V{ can be solved by dynamic
programming:

Vr(sr,mr) = 9gr(sr),
Vi(st, 1) = max(gi(st), Ci(st,mt)), t=T—1,...,1,

where the continuation value
Ci(st, mt) 2 E[Vey1|F] = E[Vay1(Stat, My 1)|St = St Xe ~ 7).

@ The optimal stopping time 7* can be derived by the following
recursion:

=T,
*

T =T Yesumysasyy T Tasny<asyy: t=T-1,....1.



Typical Computational Difficulties

The exact dynamic programming is impossible due to the following
computational difficulties.

@ The filtering distribution [1; is infinite dimensional.

@ The updating of the value function V; or the continuation value C;
involves conditional expectations.

@ (X:,S;) can be high dimensional.



Outline of Our Approach

An upper-and-lower-bound approach: the gap between the bounds
gives an indication of the quality of the solutions.

@ Asymptotic upper bound — Filtering-based duality approach

@ Asymptotic lower bound — Longstaff’s least square Monte
Carlo method



Upper Bound: Martingale Duality

Theorem: extension of Rogers(2002), Haugh and Kogan (2004)

Let M represent the space of ]—“,S-adapted martingale M; with My = 0 and
SUPc 7 |Mi| < oo, we have

Vo (S0, m0) = M'Q/fvn {E[rpe?-}((gt(st) — M;)[So = 80, Xo ~ 7To]} .

@ The process V; is called the Snell envelop of g, and is a (smallest)
supermartingale that dominates g, i.e. E[Vi1|F] < V..

@ The optimal martingale M; is the martingale part of the Snell envelop V;.

@ By Doob-Meyer decomposition, M; = 3!, A* with
A = E[V;|]-}S] - E[Vf‘]:ts—d = IE[QT[*(ST[*)LF[S] - ]E[ng*(STl*)|fi1].
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Upper Bound: Suboptimal Martingale

@ Any ]—'ts—adapted martingale M; € M leads to an upper bound on
the option price:

Vo(So, o) < E[r;flee};((g(st) — M;)|So = 8o, Xo ~ o).

@ Given a suboptimal stopping time 7, we can construct a
suboptimal martingale M; = >"!_, A; with

At = E[g-,(S5)|St, Xt ~ Ti] — E[9(S7)|St—1, Xt—1 ~ Mi_4].
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Upper Bound: The Filtering-Based Duality Approach

1. Generate N; independent paths of the asset price {ssk)
with initial condition Xy ~ mg and Sy = sg.

2. Fork=1,2,--- /N;,do
—Fort=T,---,1compute M) = AL ... 4 A with

AY = E[gn(S)Is(, 7] — Elg ()l 781,

— Evaluate UK = maxc s (g(S,(k)) — Mt(k)>. End

3. Set Uy, = - Yp, UW.

k
57}

UKA is an asymptotic upper bound on the option price Vy(So, 7).
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Upper Bound: Approximate Martingale Difference

@ In the filtering-Based duality approach, how to compute the
martingale difference?

Ar = ]E[th(STt)|Sf77ri] - E[QT,(ST,)|St,1,7rt,1].

— Particle filtering for approximating m;: #¢ = >, Oy

— Nested simulation for approximating E[g-,(S:,,,)|St = 81, X = x,(i)].
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Upper Bound: Suboptimal Stopping Time

@ In the filtering-based duality approach, how to find a suboptimal
stopping time?

@ We use the least square Monte Carlo method proposed by
Longstaff and Schwartz (2001)

T = Ta

o= Tt Vgsysasy T T@sy<acsyy =TT

where the approximate continuation value C;(S;) is obtained by
the regression method.
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Asymptotic Lower Bound

@ Any suboptimal stopping time 7 leads to a lower bound on the
option price V.

— Generate N independent sample paths of the asset price
s = (s . sy =1, N.

— Applying 7 on all sample paths, and take the average payoff
L= Zf\; QT(SQ))'

@ L}, is an asymptotic lower bound.
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Numerical Results

@ We consider pricing an American put option

9:(Sr) = max (e”"(K — &),0).

@ Parameter setting:

Volatility parameter: A=1,0=0.15,v=0.1, p =0;

Asset price parameter: r = 0.05, K = 100;

Time parameter: §t = 0.2,0.1,0.05, and T = 1/4t;

Initial condition: Sp = 110, xg = 0.15.

Basis functions:

h[1(St) = eXp(St), h[g(st) = exp(fSt/Z)(1 — St), htg(st) =1.
Number of sample paths: Ny = 500, N = 40000.

16/19



Numerical Results

Figure: Table: American Put Option Values

V= Overprice
(L+U)/2

1.575 1.336 1.368 1.352 0.223 1.382
0.1 1.726 1.414 1.538 1.476 0.250 1.599
0.05 1.912 1.523 1.649 1.586 0.326 1.714

@ The option is overpriced about 15% if the volatility is treated as fully
observable.

@ Our upper and lower bound solutions are close enough, indicating that
both are good approximations of the true price.

@ The upper bound U(m = 100) with particle number m = 100 is tighter
than U(m = 50) with particle number m = 50.
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Conclusions

@ We consider pricing American options under the realistic
assumption that the SV is not directly observable.

@ We propose a filtering-based duality approach, which
complements a lower bound (and a suboptimal exercise policy) by
an asymptotic upper bound.

@ Numerical results confirm that the option is overpriced when the
SV is treated as fully observable, and show that our approach
provides good approximation of the true option price.
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Thank you !



