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Introduction and Motivation

Stochastic volatility (SV) models capture the impact of
time-varying volatility on the financial markets, and hence are
heavily used in financial engineering.

Most research on American option pricing in SV models assume
that the volatility is fully observable.

However, SV is not directly observable in reality.

Consequence of assuming fully observable SV:
Overpricing of the option.
The optimal exercise policy not replicable in reality.
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Partially Observable SV

SV is not directly observable ∕= We know nothing about SV.

SV can be inferred from the observed asset prices: a density
estimator is ℙ(SV|history of asset prices). So SV is “partially
observable”.

This density estimator provides a full characterization of the SV
based on all the available information.

An optimal exercise policy in reality should rely on all the available
information (i.e., the history of asset price).
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SV Model

Let (Ω,ℱ ,ℱt ,ℙ) be a probability space. The SV {Xt} and price
{St} of an asset follow the processes:

dXt = �(Xt )dt + �(Xt )dW̃ 1
t ,

dSt = St (rdt + �(Xt )dW 2
t ),

where r is the interest rate, {W̃ 1
t } and {W 2

t } are correlated
Wiener processes with dW̃ 1

t dW 2
t = �dt and � ∈ [−1,1].

For example, in Heston Model, {Xt} is an
Ornstein-Uhlenbeck(OU) process that satisfies

dXt = �(� − Xt )dt + 
dW̃ 1
t .
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Pricing under Partially Observable SV

Assume a finite number of exercise opportunities {t0, t1, . . . , tT},
simply denoted as J = {0,1, . . . ,T}. Denote
ℱS

t ≜ �(S0,S1, . . . ,St ).

The option (it is in fact a Bermudan option) price is

V0(s0, �0) = max
�∈J ,{ℱS

t }−adpted
E[g� (S� )∣S0 = s0,X0 ∼ �0].

The stopping time (exercise policy) � only depends on the history
of the asset price.
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Transformation

The above partially observable problem can be transformed to an
equivalent fully observable one by introducing a new state,
"filtering distribution":

�t (xt ) = p(Xt = xt ∣S0 = s0, ⋅ ⋅ ⋅ ,St = st ), t = 1, . . . ,T .

Πt (random variable form of �t ) is updated by receiving the asset
price St at time t . Πt satisfies the recursion

Πt = Φt (Πt−1,St−1,St ), t = 1, . . . ,T .

Therefore, (St ,Πt ) is an ℱS
t -adapted Markov process.
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Theoretical Approach: Dynamic Programming

Theoretically, the option value V0 can be solved by dynamic
programming:

VT (sT , �T ) = gT (sT ),

Vt (st , �t ) = max (gt (st ),Ct (st , �t )) , t = T − 1, . . . ,1,

where the continuation value

Ct (st , �t ) ≜ E[Vt+1∣ℱS
t ] = E[Vt+1(St+1,Πt+1)∣St = st ,Xt ∼ �t ].

The optimal stopping time �∗ can be derived by the following
recursion:

�∗T = T ,
�∗t = �∗t+1 ⋅ 1{Ct (St ,Πt )>gt (St )} + t ⋅ 1{Ct (St ,Πt )≤gt (St )}, t = T − 1, . . . ,1.
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Typical Computational Difficulties

The exact dynamic programming is impossible due to the following
computational difficulties.

The filtering distribution Πt is infinite dimensional.

The updating of the value function Vt or the continuation value Ct
involves conditional expectations.

(Xt ,St ) can be high dimensional.
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Outline of Our Approach

An upper-and-lower-bound approach: the gap between the bounds
gives an indication of the quality of the solutions.

Asymptotic upper bound — Filtering-based duality approach

Asymptotic lower bound — Longstaff’s least square Monte
Carlo method
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Upper Bound: Martingale Duality

Theorem: extension of Rogers(2002), Haugh and Kogan (2004)
Letℳ represent the space of ℱS

t -adapted martingale Mt with M0 = 0 and
supt∈J ∣Mt ∣ <∞ , we have

V0(s0, �0) = inf
M∈ℳ

{
E[max

t∈J
(gt (St )−Mt )∣S0 = s0,X0 ∼ �0]

}
.

The process Vt is called the Snell envelop of gt , and is a (smallest)
supermartingale that dominates gt , i.e. E[Vt+1∣ℱS

t ] ≤ Vt .

The optimal martingale M∗t is the martingale part of the Snell envelop Vt .

By Doob-Meyer decomposition, M∗t =
∑t

i=0 Δ∗i with
Δ∗t = E[Vt ∣ℱS

t ]− E[Vt ∣ℱS
t−1] = E[g�∗

t
(S�∗

t
)∣ℱS

t ]− E[g�∗
t

(S�∗
t

)∣ℱS
t−1].
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Upper Bound: Suboptimal Martingale

Any ℱS
t -adapted martingale Mt ∈ℳ leads to an upper bound on

the option price:

V0(s0, �0) ≤ E[max
t∈J

(g(St )−Mt )∣S0 = s0,X0 ∼ �0].

Given a suboptimal stopping time � , we can construct a
suboptimal martingale Mt =

∑t
i=0 Δi with

Δt = E[g�t (S�t )∣St ,Xt ∼ Πt ]− E[g�t (S�t )∣St−1,Xt−1 ∼ Πt−1].
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Upper Bound: The Filtering-Based Duality Approach

1. Generate N1 independent paths of the asset price {s(k)
1 , . . . , s(k)

T }
with initial condition X0 ∼ �0 and S0 = s0.

2. For k = 1,2, ⋅ ⋅ ⋅ ,N1, do
– For t = T , ⋅ ⋅ ⋅ ,1 compute M(k)

t = Δ
(k)
1 + ⋅ ⋅ ⋅+ Δ

(k)
t with

Δ
(k)
t = E[g�t (S�t )∣s

(k)
t , �

(k)
t ]− E[g�t (S�t )∣s

(k)
t−1, �

(k)
t−1].

– Evaluate U(k) = maxt∈J

(
g(S(k)

t )−M(k)
t

)
. End

3. Set U�
N1

= 1
N1

∑N1
k=1 U(k).

U�
N1

is an asymptotic upper bound on the option price V0(s0, �0).
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Upper Bound: Approximate Martingale Difference

In the filtering-Based duality approach, how to compute the
martingale difference?

Δt = E[g�t (S�t )∣st , �t ]− E[g�t (S�t )∣st−1, �t−1].

– Particle filtering for approximating �t : �̂t =
∑m

i=1 �x i
t
.

– Nested simulation for approximating E[g�t (S�t+1 )∣St = st ,Xt = x (i)
t ].
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Upper Bound: Suboptimal Stopping Time

In the filtering-based duality approach, how to find a suboptimal
stopping time?

We use the least square Monte Carlo method proposed by
Longstaff and Schwartz (2001)

�T = T ,
�t = �t+1 ⋅ 1{C̃t (St )>gt (St )} + t ⋅ 1{C̃t (St )≤gt (St )}, t = T − 1, . . . ,1.

where the approximate continuation value C̃t (St ) is obtained by
the regression method.
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Asymptotic Lower Bound

Any suboptimal stopping time � leads to a lower bound on the
option price V0.

– Generate N independent sample paths of the asset price
s(i) = {s(i)

1 , ⋅ ⋅ ⋅ , s(i)
T }, i = 1, . . . ,N.

– Applying � on all sample paths, and take the average payoff
L�

N = 1
N

∑N
i=1 g� (s(i)

� ).

L�N is an asymptotic lower bound.
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Numerical Results

We consider pricing an American put option

gt (St ) = max
(
e−rt (K − St ),0

)
.

Parameter setting:
Volatility parameter: � = 1, � = 0.15 ,
 = 0.1, � = 0;
Asset price parameter: r = 0.05, K = 100;
Time parameter: �t = 0.2,0.1,0.05, and T = 1/�t ;
Initial condition: S0 = 110, x0 = 0.15.
Basis functions:
ht1(St ) = exp(St ), ht2(St ) = exp(−St/2)(1− St ), ht3(St ) = 1.
Number of sample paths: N1 = 500,N = 40000.
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Numerical Results

Figure: Table: American Put Option Values

δt Full Obs. L U 
(m=100)

V = 
(L+U)/2

Overprice U 
(m=50)

0.2 1.575 1.336 1.368 1.352 0.223 1.382

0.1 1.726 1.414 1.538 1.476 0.250 1.599

0.05 1.912 1.523 1.649 1.586 0.326 1.714

The option is overpriced about 15% if the volatility is treated as fully
observable.

Our upper and lower bound solutions are close enough, indicating that
both are good approximations of the true price.

The upper bound U(m = 100) with particle number m = 100 is tighter
than U(m = 50) with particle number m = 50.
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Conclusions

We consider pricing American options under the realistic
assumption that the SV is not directly observable.

We propose a filtering-based duality approach, which
complements a lower bound (and a suboptimal exercise policy) by
an asymptotic upper bound.

Numerical results confirm that the option is overpriced when the
SV is treated as fully observable, and show that our approach
provides good approximation of the true option price.
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Thank you !
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